Interfacial properties in multiphase food systems: scientific trends in formation, structure and functionality Status: In Press
Main Article Content
Abstract
To examine the interfacial properties of flours in the development of instant products, a bibliometric study of 633 articles (1983–present) was conducted using the Scopus database. The Science Mapping Analysis Tool (SciMAT) was employed to generate thematic evolution structures, strategic diagrams, and thematic networks, offering both bibliometric and visual insights into the field. The study identified strategic research clusters and key trends, including a growing focus on protein assessment in recent decades. Proteins in flours are essential for stabilizing interfaces, with their behavior influenced by factors such as pH, temperature, and interactions with other food components. Among the various methods available, dilatational rheology emerges as a critical approach for analyzing interfacial properties, as it measures expansion moduli that reflect both elastic and viscous behaviors. Additionally, advanced tools like microparticle size analyzers, interfacial rheometers, and adsorption spectroscopy provide precise insights into interface topography and molecular interactions. Computational models further enhance understanding by predicting complex interfacial behaviors, supporting the optimization of formulations to improve viscoelastic properties, functionality, and sensory quality. This integrative approach, emphasizing interfacial rheology and molecular interactions, is fundamental to driving innovation in the development of stable, functional, and sensorially appealing instant products.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
All the texts published in this magazine are distributed under a Creative Commons License «Attribution-Non-Commercial-Share the same»
References
Q. Li, Z. Wan, y X. Yang, “Glycyrrhizic acid: self-assembly and applications in multiphase food systems”, Curr. Opin. Food Sci., vol. 43, pp. 107–113, feb. 2022, doi: 10.1016/J.COFS.2021.11.008.
M. Xu, Z. Wan, y X. Yang, “Recent Advances and Applications of Plant-Based Bioactive Saponins in Colloidal Multiphase Food Systems”, Mol. 2021, Vol. 26, Page 6075, vol. 26, núm. 19, p. 6075, oct. 2021, doi: 10.3390/MOLECULES26196075.
S. Lam, K. P. Velikov, y O. D. Velev, “Pickering stabilization of foams and emulsions with particles of biological origin”, Curr. Opin. Colloid Interface Sci., vol. 19, núm. 5, pp. 490–500, oct. 2014, doi: 10.1016/J.COCIS.2014.07.003.
L. M. Sagis y J. Yang, “Protein-stabilized interfaces in multiphase food: comparing structure-function relations of plant-based and animal-based proteins”, Curr. Opin. Food Sci., vol. 43, pp. 53–60, feb. 2022, doi: 10.1016/J.COFS.2021.11.003.
J. M. Conde y J. M. Rodríguez Patino, “The effect of enzymatic treatment of a sunflower protein isolate on the rate of adsorption at the air–water interface”, J. Food Eng., vol. 78, núm. 3, pp. 1001–1009, feb. 2007, doi: 10.1016/J.JFOODENG.2005.12.013.
V. Ortiz-Gómez, J. E. Nieto-Calvache, D. F. Roa-Acosta, J. F. Solanilla-Duque, y J. E. Bravo-Gómez, “Preliminary Characterization of Structural and Rheological Behavior of the Quinoa Hyperprotein-Defatted Flour”, Front. Sustain. Food Syst., vol. 6, p. 160, may 2022, doi: 10.3389/FSUFS.2022.852332/BIBTEX.
B. Z. Yuan y J. Sun, “Bibliometric analysis of blueberry (Vaccinium corymbosum L.) research publications based on Web of Science”, Food Sci. Technol., vol. 42, p. e96321, dic. 2021, doi: 10.1590/FST.96321.
S. ’ed H. Zyoud, M. Shakhshir, A. S. Abushanab, A. Koni, M. Hamdallah, y S. W. Al-Jabi, “Mapping the knowledge structure of a gluten-free diet: a global perspective”, Transl. Med. Commun. 2023 81, vol. 8, núm. 1, pp. 1–12, sep. 2023, doi: 10.1186/S41231-023-00152-W.
A. W. Harzing y S. Alakangas, “Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison”, Scientometrics, vol. 106, núm. 2, pp. 787–804, feb. 2016, doi: 10.1007/S11192-015-1798-9/TABLES/4.
D. H. Flórez-Martínez, C. A. Contreras-Pedraza, y J. Rodríguez, “A systematic analysis of non-centrifugal sugar cane processing: Research and new trends”, Trends Food Sci. Technol., vol. 107, pp. 415–428, ene. 2021, doi: 10.1016/J.TIFS.2020.11.011.
X. Ma, H. Luo, F. Zhang, y F. Gao, “A bibliometric and visual analysis of fruit quality detection research”, Food Sci. Technol., vol. 42, p. e72322, sep. 2022, doi: 10.1590/FST.72322.
E. Solano López, S. J. Castellanos Quintero, M. Magdalena López Rodríguez del Rey, y J. I. Hernández Fernández, “La bibliometría: una herramienta eficaz para evaluar la actividad científica postgraduada”, MediSur, vol. 7, núm. 4, pp. 59–62, 2009, Consultado: el 27 de febrero de 2023. [En línea]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1727-897X2009000400011&lng=es&nrm=iso&tlng=es
F. Okumus, M. A. Köseoglu, E. D. Putra, I. C. Dogan, y M. Yildiz, “A Bibliometric Analysis of Lodging-Context Research From 1990 to 2016”, J. Hosp. Tour. Res., vol. 43, núm. 2, pp. 210–225, feb. 2019, doi: 10.1177/1096348018765321.
M. J. Cobo, A. G. López-Herrera, E. Herrera-Viedma, y F. Herrera, “An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field”, J. Informetr., vol. 5, núm. 1, pp. 146–166, ene. 2011, doi: 10.1016/J.JOI.2010.10.002.
X. Cao et al., “Knowledge Mapping of Dietary Factors of Metabolic Syndrome Research: Hotspots, Knowledge Structure, and Theme Trends”, Front. Nutr., vol. 8, p. 295, may 2021, doi: 10.3389/FNUT.2021.655533/BIBTEX.
K. P. Das y J. E. Kinsella, “Stability Of Food Emulsions: Physicochemical Role Of Protein And Nonprotein Emulsifiers”, Adv. Food Nutr. Res., vol. 34, núm. C, pp. 81–201, ene. 1990, doi: 10.1016/S1043-4526(08)60007-8.
M. A. Bos y T. Van Vliet, “Interfacial rheological properties of adsorbed protein layers and surfactants: a review”, Adv. Colloid Interface Sci., vol. 91, núm. 3, pp. 437–471, jul. 2001, doi: 10.1016/S0001-8686(00)00077-4.
V. N. Izmailova y G. P. Yampolskaya, “Rheological parameters of protein interfacial layers as a criterion of the transition from stable emulsions to microemulsions”, Adv. Colloid Interface Sci., vol. 88, núm. 1–2, pp. 99–128, dic. 2000, doi: 10.1016/S0001-8686(00)00042-7.
A. R. Mackie, A. P. Gunning, M. J. Ridout, P. J. Wilde, y J. R. Patino, “In situ measurement of the displacement of protein films from the air/water interface by surfactant”, Biomacromolecules, vol. 2, núm. 3, pp. 1001–1006, 2001, doi: 10.1021/BM015540I.
J. M. Rodríguez Patino, J. M. Navarro García, y M. R. Rodríguez Nio, “Protein-lipid interactions at the oil-water interface”, Colloids Surfaces B Biointerfaces, vol. 21, núm. 1–3, pp. 207–216, 2001, doi: 10.1016/S0927-7765(01)00173-4.
G. Gürbüz, V. Kauntola, J. M. Ramos Diaz, K. Jouppila, y M. Heinonen, “Oxidative and physical stability of oil-in-water emulsions prepared with quinoa and amaranth proteins”, Eur. Food Res. Technol., vol. 244, núm. 3, pp. 469–479, mar. 2018, doi: 10.1007/S00217-017-2973-4/FIGURES/4.
J. M. Rodríguez Patino y M. R. Rodríguez Niño, “Interfacial characteristics of food emulsifiers (proteins and lipids) at the air-water interface”, Colloids Surfaces B Biointerfaces, vol. 15, núm. 3–4, pp. 235–252, oct. 1999, doi: 10.1016/S0927-7757(99)00012-6.
M. J. Reeve y P. Sherman, “The interaction of modified 7S soy protein with mono- and di-glycerides at the oil-water interface and its effect on the stability of concentrated corn oil-in-water emulsions”, Colloid Polym. Sci., vol. 266, núm. 10, pp. 930–936, oct. 1988, doi: 10.1007/BF01410849/METRICS.
J. Holstborg, B. V. Pedersen, N. Krog, y S. K. Olesen, “Physical properties of diglycerol esters in relation to rheology and stability of protein-stabilised emulsions”, Colloids Surfaces B Biointerfaces, vol. 12, núm. 3–6, pp. 383–390, ene. 1999, doi: 10.1016/S0927-7765(98)00092-7.
J. P. Krause, R. Wüstneck, A. Seifert, y K. D. Schwenke, “Stress-relaxation behaviour of spread films and coalescence stability of o/w emulsions formed by succinylated legumin from faba beans (Vicia faba L.)”, Colloids Surfaces B Biointerfaces, vol. 10, núm. 3, pp. 119–126, feb. 1998, doi: 10.1016/S0927-7765(97)00026-X.
E. Dickinson, M. G. Semenova, A. S. Antipova, y E. G. Pelan, “Effect of high-methoxy pectin on properties of casein-stabilized emulsions”, Food Hydrocoll., vol. 12, núm. 4, pp. 425–432, oct. 1998, doi: 10.1016/S0268-005X(98)00057-5.
F. Boury, T. Ivanova, I. Panaïotov, y J. E. Proust, “Dilatational Properties of Poly(D,L-lactic acid) and Bovine Serum Albumin Monolayers Spread at the Air/Water Interface”, Langmuir, vol. 11, núm. 2, pp. 599–606, 1995, doi: 10.1021/LA00002A040/ASSET/LA00002A040.FP.PNG_V03.
L. A. Lobo y D. T. Wasan, “Thin film stability and interfacial rheology of emulsion systems”, AIChE Symp. Ser., vol. 86, núm. 277, pp. 25–34, 1990.
M. P. T. and C. S. A.N. Calzetta Resio, “Some physical and thermal characteristics of amaranth starch”, pp. 371–378, 1996.
R. Miller, R. Wüstneck, J. Krägel, y G. Kretzschmar, “Dilational and shear rheology of adsorption layers at liquid interfaces”, Colloids Surfaces A Physicochem. Eng. Asp., vol. 111, núm. 1–2, pp. 75–118, jun. 1996, doi: 10.1016/0927-7757(95)03492-7.
P. J. Wilde, “Interfaces: their role in foam and emulsion behaviour”, Curr. Opin. Colloid Interface Sci., vol. 5, núm. 3–4, pp. 176–181, jul. 2000, doi: 10.1016/S1359-0294(00)00056-X.
F. Tamm, S. Herbst, A. Brodkorb, y S. Drusch, “Functional properties of pea protein hydrolysates in emulsions and spray-dried microcapsules”, Food Hydrocoll., vol. 58, pp. 204–214, jul. 2016, doi: 10.1016/J.FOODHYD.2016.02.032.
A. H. Martin, K. Grolle, M. A. Bos, M. A. Cohen Stuart, y T. Van Vliet, “Network Forming Properties of Various Proteins Adsorbed at the Air/Water Interface in Relation to Foam Stability”, J. Colloid Interface Sci., vol. 254, pp. 175–183, 2002, doi: 10.1006/jcis.2002.8592.
R. Borbás, B. S. Murray, y É. Kiss, “Interfacial shear rheological behaviour of proteins in three-phase partitioning systems”, Colloids Surfaces A Physicochem. Eng. Asp., vol. 213, núm. 1, pp. 93–103, feb. 2003, doi: 10.1016/S0927-7757(02)00358-8.
J. M. Rodríguez Patino, M. R. Rodríguez Niño, y C. Carrera Sánchez, “Structure, miscibility, and rheological characteristics of ?-casein-monoglyceride mixed films at the air-water interface”, J. Agric. Food Chem., vol. 51, núm. 1, pp. 112–119, 2003, doi: 10.1021/jf020197+.
P. Erni, P. Fischer, E. J. Windhab, V. Kusnezov, H. Stettin, y J. Läuger, “Stress- and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces”, Rev. Sci. Instrum., vol. 74, núm. 11, pp. 4916–4924, 2003, doi: 10.1063/1.1614433.
C. Carrera Sánchez y J. M. Rodríguez Patino, “Surface shear rheology of WPI–monoglyceride mixed films spread at the air–water interface”, Colloids Surfaces B Biointerfaces, vol. 36, núm. 1, pp. 57–69, jul. 2004, doi: 10.1016/J.COLSURFB.2004.04.007.
N. P. K. Humblet-Hua, E. Van Der Linden, y L. M. C. Sagis, “Surface rheological properties of liquid–liquid interfaces stabilized by protein fibrillar aggregates and protein–polysaccharide complexes”, Soft Matter, vol. 9, núm. 7, pp. 2154–2165, jul. 2013, doi: 10.1039/C2SM26627J.
G. G. Fuller y J. Vermant, “Complex Fluid-Fluid Interfaces: Rheology and Structure”, https://doi.org/10.1146/annurev-chembioeng-061010-114202, vol. 3, pp. 519–543, jun. 2012, doi: 10.1146/ANNUREV-CHEMBIOENG-061010-114202.
A. Dan, G. Gochev, y R. Miller, “Tensiometry and dilational rheology of mixed ?-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces”, J. Colloid Interface Sci., vol. 449, pp. 383–391, jul. 2015, doi: 10.1016/J.JCIS.2015.01.035.
A. Dan, R. Wüstneck, J. Krägel, E. V. Aksenenko, V. B. Fainerman, y R. Miller, “Adsorption and dilational rheology of mixed ?-casein/DoTAB layers formed by sequential and simultaneous adsorption at the water/hexane interface”, Langmuir, vol. 29, núm. 7, pp. 2233–2241, feb. 2013, doi: 10.1021/LA304664X/SUPPL_FILE/LA304664X_SI_001.PDF.
L. Seta, N. Baldino, D. Gabriele, F. R. Lupi, y B. de Cindio, “Rheology and adsorption behaviour of ?-casein and ?-lactoglobulin mixed layers at the sunflower oil/water interface”, Colloids Surfaces A Physicochem. Eng. Asp., vol. 441, pp. 669–677, ene. 2014, doi: 10.1016/J.COLSURFA.2013.10.041.
M. Lexis y N. Willenbacher, “Yield stress and elasticity of aqueous foams from protein and surfactant solutions – The role of continuous phase viscosity and interfacial properties”, Colloids Surfaces A Physicochem. Eng. Asp., vol. 459, pp. 177–185, oct. 2014, doi: 10.1016/J.COLSURFA.2014.06.030.
M. Lexis, “Einfluss der Flüssigkeitsviskosität auf das rheologische Verhalten von Schäumen ‡”, núm. 8, pp. 1317–1323, 2013, doi: 10.1002/cite.201200128.
K. Engelhardt et al., “pH E ff ects on the Molecular Structure of ? ? Lactoglobulin Modi fi ed Air ? Water Interfaces and Its Impact on Foam Rheology”, 2013.
M. Noshad, M. Mohebbi, F. Shahidi, y A. Koocheki, “Effect of layer-by-layer polyelectrolyte method on encapsulation of vanillin”, Int. J. Biol. Macromol., vol. 81, pp. 803–808, nov. 2015, doi: 10.1016/J.IJBIOMAC.2015.09.012.
A. R. Narváez y S. V. Vaidya, “Protein—surfactant interactions at the air-water interface”, Excip. Appl. Formul. Des. Drug Deliv., pp. 139–166, ene. 2015, doi: 10.1007/978-3-319-20206-8_6/COVER.
W. Li et al., “Improvement of emulsifying properties of soy protein through selective hydrolysis: Interfacial shear rheology of adsorption layer”, Food Hydrocoll., vol. 60, pp. 453–460, oct. 2016, doi: 10.1016/J.FOODHYD.2016.04.019.
E. Dickinson, “Hydrocolloids at interfaces and the influence on the properties of dispersed systems”, Food Hydrocoll., vol. 17, núm. 1, pp. 25–39, ene. 2003, doi: 10.1016/S0268-005X(01)00120-5.
A. Jaishankar y G. H. McKinley, “Power-law rheology in the bulk and at the interface: Quasi-properties and fractional constitutive equations”, Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 469, núm. 2149, ene. 2013, doi: 10.1098/RSPA.2012.0284.
P. X. Qi, H. K. Chau, M. L. Fishman, E. D. Wickham, y A. T. Hotchkiss, “Investigation of molecular interactions between ?-lactoglobulin and sugar beet pectin by multi-detection HPSEC”, Carbohydr. Polym., vol. 107, núm. 1, pp. 198–208, jul. 2014, doi: 10.1016/J.CARBPOL.2014.02.080.
L. Goibier, S. Lecomte, F. Leal-Calderon, y C. Faure, “The effect of surfactant crystallization on partial coalescence in O/W emulsions”, J. Colloid Interface Sci., vol. 500, pp. 304–314, ago. 2017, doi: 10.1016/J.JCIS.2017.04.021.
A. Kasra Asghari, I. Norton, T. Mills, P. Sadd, y F. Spyropoulos, “Interfacial and foaming characterisation of mixed protein-starch particle systems for food-foam applications”, 2015, doi: 10.1016/j.foodhyd.2015.09.007.
M. Laporte, A. Montillet, D. Della Valle, C. Loisel, y A. Riaublanc, “Characteristics of foams produced with viscous shear thinning fluids using microchannels at high throughput”, 2015, doi: 10.1016/j.jfoodeng.2015.10.032.
M. N. Corstens, L. A. Osorio Caltenco, R. de Vries, K. Schroën, y C. C. Berton-Carabin, “Interfacial behaviour of biopolymer multilayers: Influence of in vitro digestive conditions”, Colloids Surfaces B Biointerfaces, vol. 153, pp. 199–207, may 2017, doi: 10.1016/J.COLSURFB.2017.02.019.
D. N. López, V. Boeris, D. Spelzini, C. Bonifacino, L. A. Panizzolo, y C. Abirached, “Adsorption of chia proteins at interfaces: Kinetics of foam and emulsion formation and destabilization”, Colloids Surfaces B Biointerfaces, vol. 180, pp. 503–507, ago. 2019, doi: 10.1016/J.COLSURFB.2019.04.067.
M. Moussier, V. Bosc, C. Michon, V. Pistre, C. Chaudemanche, y D. Huc-Mathis, “Multi-scale understanding of the effects of the solvent and process on whey protein emulsifying properties: Application to dairy emulsion”, Food Hydrocoll., vol. 87, pp. 869–879, feb. 2019, doi: 10.1016/J.FOODHYD.2018.08.052.
N. Yang et al., “Interfacial behaviour of ?-lactoglobulin aggregates at the oil–water interface studied using particle tracking and dilatational rheology”, Soft Matter, vol. 17, núm. 10, pp. 2973–2984, mar. 2021, doi: 10.1039/D0SM01761B.
A. Kezwo? y K. Wojciechowski, “Collagen-surfactant mixtures at fluid/fluid interfaces”, Colloids Surfaces A Physicochem. Eng. Asp., vol. 509, pp. 390–400, nov. 2016, doi: 10.1016/J.COLSURFA.2016.09.040.
J. Hu et al., “Comparative study on foaming and emulsifying properties of different beta-lactoglobulin aggregates”, Food Funct., vol. 10, núm. 9, pp. 5922–5930, 2019, doi: 10.1039/c9fo00940j.
M. Felix, A. Romero, C. Carrera-Sanchez, y A. Guerrero, “Assessment of interfacial viscoelastic properties of Faba bean (Vicia faba) protein-adsorbed O/W layers as a function of pH”, Food Hydrocoll., vol. 90, pp. 353–359, may 2019, doi: 10.1016/J.FOODHYD.2018.12.036.
R. Zhang, Y. Liu, X. Huang, M. Xu, R. Liu, y W. Zong, “Interaction of a digestive protease, Candida rugosa lipase, with three surfactants investigated by spectroscopy, molecular docking and enzyme activity assay”, Sci. Total Environ., vol. 622–623, pp. 306–315, may 2018, doi: 10.1016/J.SCITOTENV.2017.11.305.
R. Marsiglia, L. Mieles-Gómez, S. Lastra, S. E. Quintana, y L. A. García-Zapateiro, “Bromatological composition and effect of temperature on the rheology of eggplant pulp”, Ital. J. Food Sci., vol. 32, núm. 3, pp. 596–604, 2020, doi: 10.14674/IJFS-1706.
S. E. Quintana, J. M. Franco, y L. Garcia-Zapateiro, “PHYSICO-CHEMICAL AND BROMATOLOGICAL CHARACTERISTICS OF ARENCA AND RHEOLOGICAL PROPERTIES OF OIL-IN-WATER EMULSIONS CONTAINING ISOLATED PROTEIN”, Ciência e Agrotecnologia, vol. 39, núm. 6, pp. 634–641, nov. 2015, doi: 10.1590/S1413-70542015000600010.
V. Kontogiorgos y S. Prakash, “Adsorption kinetics and dilatational rheology of plant protein concentrates at the air- and oil-water interfaces”, Food Hydrocoll., vol. 138, p. 108486, may 2023, doi: 10.1016/J.FOODHYD.2023.108486.
S. Yan et al., “Emulsions co-stabilized by soy protein nanoparticles and tea saponin: Physical stability, rheological properties, oxidative stability, and lipid digestion”, Food Chem., vol. 387, p. 132891, sep. 2022, doi: 10.1016/J.FOODCHEM.2022.132891.
F. A. Silva, P. A. Oyarzún, F. A. Silva, y P. A. Oyarzún, “Una visión actualizada sobre la síntesis, escalado y aplicaciones de las nanoemulsiones dobles”, Entre Cienc. e Ing., vol. 15, núm. 30, pp. 30–40, dic. 2021, doi: 10.31908/19098367.2095.
T. Wang, F. Li, H. Zhang, W. Feng, y R. Wang, “Plant-based high internal phase emulsions stabilized by dual protein nanostructures with heat and freeze–thaw tolerance”, Food Chem., vol. 373, p. 131458, mar. 2022, doi: 10.1016/J.FOODCHEM.2021.131458.
J. Yang, C. C. Berton-Carabin, C. V. Nikiforidis, E. van der Linden, y L. M. C. Sagis, “Competition of rapeseed proteins and oleosomes for the air-water interface and its effect on the foaming properties of protein-oleosome mixtures”, Food Hydrocoll., vol. 122, p. 107078, ene. 2022, doi: 10.1016/J.FOODHYD.2021.107078.
X. Yu et al., “Interfacial and rheological properties of long-lived foams stabilized by rice proteins complexed to transition metal ions in the presence of alkyl polyglycoside”, J. Colloid Interface Sci., vol. 630, pp. 645–657, ene. 2023, doi: 10.1016/J.JCIS.2022.10.126.
S. Caetano da Silva Lannes y J. Natali Miquelim, “Interfacial Behavior of Food Proteins”, Curr. Nutr. Food Sci., vol. 9, núm. 1, pp. 10–14, ene. 2013, doi: 10.2174/1573401311309010004.
P. Fischer, “Rheology of interfacial protein-polysaccharide composites”, Eur. Phys. J. Spec. Top. 2013 2221, vol. 222, núm. 1, pp. 73–81, jun. 2013, doi: 10.1140/EPJST/E2013-01827-X.