Diseño mecatrónico de una máquina para medición de fuerza en la rehabilitación monitorizada

Contenido principal del artículo

Luz Maria Tobar
Gabriela Verdezoto
Christian Renán Vásquez
Daniel Álvarez
Iván Iglesias

Resumen

Las pruebas utilizadas en el campo de la fisioterapia para la evaluación de la fuerza muscular como Lovett, Daniels, entre otras, son netamente cualitativas y se basan directamente en la experiencia del especialista. La evaluación de un rango de medición angular y fuerza en movimientos de flexión y extensión permitirá diseñar un mecanismo de rehabilitación monitorizada. Con este antecedente, el objetivo de la investigación es el análisis y diseño mecatrónico de una máquina de medición de la fuerza para la rehabilitación monitorizada, enfocado a los movimientos de flexión y extensión. Se utiliza el diseño de la estructura básica de un sistema mecatrónico y sistemas ciber-físicos para garantizar el control y tratamiento de fortalecimiento muscular de forma segura y eficiente evitando lesiones al paciente.Al final del documento se presenta la estructura mecatrónica del mecanismo el cual incluye tres módulos: isocinético, pasivo y análisis de la información. Se concluye con la definición de las características principales que permiten una mejor integración del sistema y un alto aprovechamiento del conocimiento

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Tobar, L. M., Verdezoto , G., Vásquez , C. R., Álvarez , D., & Iglesias, I. (2020). Diseño mecatrónico de una máquina para medición de fuerza en la rehabilitación monitorizada. I+ T+ C- Investigación, Tecnología Y Ciencia, 1(14), 51–59. https://doi.org/10.57173/ritc.v1n14a7
Sección
Artículos de investigación

Citas

D. Simonetti, N. L. Tagliamonte, L. Zollo, D. Accoto, and E. Guglielmelli, "Biomechatronic design criteria of systems for robot-mediated rehabilitation therapy," in Rehabilitation Robotics: Elsevier, 2018, pp. 29-46.

R. S. Gailey et al., "The amputee mobility predictor: an instrument to assess determinants of the lower-limb amputee's ability to ambulate," Arch Phys Med Rehabil, vol. 83, no. 5, pp. 613-27, May 2002.

B.-s. Choi, "A Comparative Study of Optimal Stretch Intensity For Flexibility of Hamstrings; Hand Held Dynamometer and Verbal Rating Scale," Physical Therapy Korea, vol. 24, no. 4, pp. 38-45, 2017.

K. Bennell et al., "Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers," British journal of sports medicine, vol. 32, no. 4, pp. 309-314, 1998.

U. Kuruganti and V. Chester, "Adapters for use with dynamometer for subjects having limb impairment," ed: Google Patents, 2018.

G. V. Luz María Tobar subía, Jorge Cuasapaz, "Memorias del I Congreso Internacional de Bioingeniería y Sistemas Inteligentes de Rehabilitación," CIBSIR 2017, vol. 1, 2017.

M. Cadet and H. Meissner, "Cybertronische Systeme," in Modellbasierter Entwicklungsprozess cybertronischer Systeme: Springer, 2017, pp. 19-22.

I. Lee et al., "Challenges and research directions in medical cyber–physical systems," Proceedings of the IEEE, vol. 100, no. 1, pp. 75-90, 2012.

H. Hislop, D. Avers, and M. Brown, Daniels and Worthingham's muscle Testing-E-Book: Techniques of manual examination and performance testing. Elsevier Health Sciences, 2013.

R. W. Bohannon and M. B. Smith, "Interrater reliability of a modified Ashworth scale of muscle spasticity," Physical therapy, vol. 67, no. 2, pp. 206-207, 1987.

P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar, and M. Van der Loos, "Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke," Archives of physical medicine and rehabilitation, vol. 83, no. 7, pp. 952-959, 2002.

S. Bandinelli et al., "Measuring muscular strength of the lower limbs by hand-held dynamometer: a standard protocol," Aging Clinical and Experimental Research, vol. 11, no. 5, pp. 287-293, 1999.

M. Camargo, C. E. P. T. Fregonesi, A. J. L. Nozabieli, and C. R. S. de Faria, "AVALIAÇÃO DA FORÇA MUSCULAR ISOMÉTRICA DO TORNOZELO. DINAMOMETRIA: DESCRIÇÃO DA TÉCNICAAVALIAÇÃO DA FORÇA MUSCULAR ISOMÉTRICA DO TORNOZELO. DINAMOMETRIA: DESCRIÇÃO DA TÉCNICA," Revista Brasileira de Ciências da Saúde, vol. 13, no. 2, pp. 89-96, 2010.

I. M. González-Moro, "GENERALIDADES SOBRE LA DINAMOMETRÍA ISOCINÉTICA," Academia.

V. Moreno-Pérez, D. Barbado-Murillo, C. Juan-Recio, C. M. Quesada-de-la-Gala, and F. J. Vera-García, "Aplicación de la dinamometría isocinética para establecer perfiles de riesgo de lesión isquiosural en futbolistas profesionales.[The use of isokinetic dynamometry to establish risk profiles of hamstring injury in professional football players]," RICYDE. Revista Internacional de Ciencias del Deporte. doi: 10.5232/ricyde, vol. 9, no. 34, pp. 333-341, 2013.

E. Isakov, H. Burger, M. Gregori?, and C. Marin?ek, "Isokinetic and isometric strength of the thigh muscles in below-knee amputees," Clinical Biomechanics, vol. 11, no. 4, pp. 233-235, 1996.

J.-L. Croisier, B. Forthomme, M.-H. Namurois, M. Vanderthommen, and J.-M. Crielaard, "Hamstring muscle strain recurrence and strength performance disorders," The American journal of sports medicine, vol. 30, no. 2, pp. 199-203, 2002.

N. van Dyk et al., "Hamstring and quadriceps isokinetic strength deficits are weak risk factors for hamstring strain injuries: a 4-year cohort study," The American journal of sports medicine, vol. 44, no. 7, pp. 1789-1795, 2016.

I. Lee and O. Sokolsky, "Medical cyber physical systems," pp. 743-748: IEEE.

M. Eigner, W. Koch, and C. Muggeo, "Modellbasierter Entwicklungsprozess cybertronischer Systeme," in Der PLM-unterstützte Referenzentwicklungsprozess für Produkte und Produktionssysteme: Springer, 2017.

M. Woodside, J. E. Neilson, D. C. Petriu, and S. Majumdar, "The stochastic rendezvous network model for performance of synchronous client-server-like distributed software," IEEE Transactions on Computers, vol. 44, no. 1, pp. 20-34, 1995.

A. Gatouillat, Y. Badr, B. Massot, and E. Sejdi?, "Internet of medical things: A review of recent contributions dealing with cyber-physical systems in medicine," IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3810-3822, 2018.

P. Rizwan, M. R. Babu, B. Balamurugan, and K. Suresh, "Real-time big data computing for Internet of Things and cyber physical system aided medical devices for better healthcare," in 2018 Majan International Conference (MIC), 2018, pp. 1-8.

E. Bartocci and Y. Falcone, Lectures on Runtime Verification: Introductory and Advanced Topics. Springer, 2018.

S. Schupp et al., "Current challenges in the verification of hybrid systems," pp. 8-24: Springer.

K. Zhang, J. Sprinkle, and R. G. Sanfelice, "Computationally aware switching criteria for hybrid model predictive control of cyber-physical systems," IEEE Transactions on Automation Science and Engineering, vol. 13, no. 2, pp. 479-490, 2016.

M. R. Mousavi and C. Berger, Cyber Physical Systems. Design, Modeling, and Evaluation: 5th International Workshop, CyPhy 2015, Amsterdam, the Netherlands, October 8, 2015, Proceedings. Springer, 2015.

R. Goebel, R. G. Sanfelice, and A. R. Teel, "Hybrid dynamical systems," IEEE Control Systems Magazine, vol. 29, no. 2, pp. 28-93, 2009.

A. H. G. J. Feldhusen, Dresden; J.-P. Majschak, Dresden; M. Orloff, Berlin; H. Schürmann, Darmstadt, "Grundlagen der Konstruktionstechnik," (in Deutsch), Grundlagen der Konstruktionstechnik – 1 Grundlagen technischer Systeme und des methodischen Vorgehens, 2002.

D. Casner, R. Houssin, J. Renaud, and D. Knittel, "An Optimization-Based Embodiment Design Approach for Mechatronic Product Development," The Open Automation and Control Systems Journal, vol. 9, no. 1, 2017.

J. Chipka, M. A. Meller, A. Volkov, M. Bryant, and E. Garcia, "Linear dynamometer testing of hydraulic artificial muscles with variable recruitment," Journal of Intelligent Material Systems and Structures, vol. 28, no. 15, pp. 2051-2063, 2017.

C. R. i. Romeva, "Diseño concurrente," 2002.

A. Bryan, H. Wang, and J. Abell, "Concurrent Design of Product Families and Reconfigurable Assembly Systems," Journal of Mechanical Design, vol. 135, no. 5, pp. 051001-051001-16, 2013.

B. G. Roces, "Análisis de datos para el estudio de pruebas isocinéticas de tobillo," 2017.

J. Eker et al., "Taming heterogeneity-the Ptolemy approach," Proceedings of the IEEE, vol. 91, no. 1, pp. 127-144, 2003