IMPLEMENTATION OF A BRAIN COMPUTER INTERFACE FOR THE END EFFECTOR OF A UR3 COLLABORATIVE ROBOT

Main Article Content

Edwin Diaz
https://orcid.org/0000-0003-3226-6260
Bryan Vega
https://orcid.org/0000-0003-0225-6459
Nayibe Chio
https://orcid.org/0000-0002-9459-4350
Johann Barragan
https://orcid.org/0000-0001-6114-6116
Eduardo Quiles

Abstract

Motor imagery in brain-computer interfaces has an important role in rehabilitating motor disorders and applying multiple technologies. However, it is a field of research that has a long way to go due to the large number of variables that can change the results of an experiment and the fact that EEG signals vary from one subject to another. Therefore, a brain-computer interface was implemented to control the end effector of a UR3 collaborative robot. The interface uses an Enobio 8, motor imagery for signal acquisition, MATLAB for command preprocessing, processing, translation, and dispatch, and ROS to enable communication between MATLAB and the UR3.

Downloads

Download data is not yet available.

Article Details

How to Cite
Diaz, E. ., Vega, B. ., Chio, N., Barragan, J., & Quiles, E. . (2023). IMPLEMENTATION OF A BRAIN COMPUTER INTERFACE FOR THE END EFFECTOR OF A UR3 COLLABORATIVE ROBOT. I+ T+ C- Research, Technology and Science, 1(17). Retrieved from https://revistas.unicomfacauca.edu.co/ojs/index.php/itc/article/view/397
Section
Research Papers

References

J. C. Cubillos Alzate and S. A. Perea Caro, “Boletines poblacionales, personas con discapacidad pcd1 oficina de promoción social,” Dec. 2020. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/PS/boletines-poblacionales-personas-discapacidadI-2020.pdf (accessed Jun. 05, 2022).

A. M. Peña Alvarez, “Desarrollo de interfaz cerebro-máquina basada en el análisis de EEG y potenciales visuales evocados en estado estable para el control de un objeto,” instname:Universidad de los Andes, 2015, Accessed: Aug. 07, 2022. [Online]. Available: http://hdl.handle.net/1992/17442

J. Henderson and International neuromodulation society, “Motor Impairment,” Apr. 02, 2012. https://www.neuromodulation.com/motor-impairment#:~:text=Motor%20impairment%20is%20the%20partial,muscle%20control,%20or%20total%20paralysis (accessed Jun. 09, 2022).

Ü. Hayta, D. C. Irimia, C. Guger, ?. Erkutlu, and ?. H. Güzelbey, “Optimizing Motor Imagery Parameters for Robotic Arm Control by Brain-Computer Interface,” Brain Sci, vol. 12, no. 7, 2022, doi: 10.3390/brainsci12070833.

V. Nandikolla and D. A. Medina Portilla, “Teleoperation Robot Control of a Hybrid EEG-Based BCI Arm Manipulator Using ROS,” Journal of Robotics, vol. 2022, pp. 1–14, May 2022, doi: 10.1155/2022/5335523.

S. P. Karunasena, D. C. Ariyarathna, R. Ranaweera, J. Wijayakulasooriya, K. Kim, and T. Dassanayake, “Single-Channel EEG SSVEP-based BCI for Robot Arm Control,” in 2021 IEEE Sensors Applications Symposium (SAS), IEEE, Aug. 2021, pp. 1–6. doi: 10.1109/SAS51076.2021.9530189.

M. Vilela and L. R. Hochberg, “Applications of brain-computer interfaces to the control of robotic and prosthetic arms,” 2020, pp. 87–99. doi: 10.1016/B978-0-444-63934-9.00008-1.

S. Jalilpour and G. Müller-Putz, “Toward passive BCI: asynchronous decoding of neural responses to direction- and angle-specific perturbations during a simulated cockpit scenario,” Sci Rep, vol. 12, no. 1, p. 6802, Dec. 2022, doi: 10.1038/s41598-022-10906-5.

A. P. Kurmis and J. R. Ianunzio, “Artificial intelligence in orthopedic surgery: evolution, current state and future directions,” Arthroplasty, vol. 4, no. 1, 2022, doi: 10.1186/s42836-022-00112-z.

D. S. Vadivelan, S. Prabhu, and M. Uma, “Analysis of bci system to operate robotic arm control for navigation to assist disable pepople (a review),” ??????? ??????(ICES), vol. 2021, p. 75, Nov. 2021, [Online]. Available: https://stanford.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edskis&AN=edskis.3947634

Q. Huang, Z. Zhang, T. Yu, S. He, and Y. Li, “An EEG-/EOG-based hybrid brain-computer interface: application on controlling an integrated wheelchair robotic arm system,” Front Neurosci, vol. 13, 2020.

S. Norman, “Brain Computer Interface Design for Robot Assisted Neurorehabilitation,” 2017. [Online]. Available: https://escholarship.org/uc/item/4v18v0d3

R. Mane, T. Chouhan, and C. Guan, “BCI for stroke rehabilitation: motor and beyond,” J Neural Eng, vol. 17, no. 4, p. 041001, Aug. 2020, doi: 10.1088/1741-2552/aba162.

N. González and J. Francisco, “Diseño y desarrollo de un sistema para el control mental de prótesis utilizando una interfaz cerebro-computadora (bci),” Trabajo de grado, Universidad Nacional Autónoma de México, Mexico, 2013. Accessed: Aug. 16, 2022. [Online]. Available: https://ru.dgb.unam.mx/handle/DGB_UNAM/TES01000710076

S. Ibagué Martín, “Diseño de un prototipo de plataforma móvil a partir de eventos cerebrales generados en el lóbulo frontal,” 2020, Accessed: Aug. 16, 2022. [Online]. Available: https://repository.usta.edu.co/handle/11634/31909#.YvzvV7iM-Tc.mendeley

L. C. Brito Medina and I. en Mecatrónica, “Control de movimiento de un móvil robótico mediante una interfaz cerebro-computador,” Oct. 2014, Accessed: Aug. 16, 2022. [Online]. Available: https://repository.unimilitar.edu.co/handle/10654/13580#.Yvzvrse7oww.mendeley

A. F. Escobar Ortiz, “Diseño de un clasificador de señales EEG provenientes de una interfaz BCI utilizando redes neuronales para controlar un robot hexápodo,” Trabajo de grado, Universidad Autónoma de Occidente, 2018. Accessed: Aug. 16, 2022. [Online]. Available: http://hdl.handle.net/10614/10354

A. F. Reyes Fernandez, “Herramienta para la generación de texto basada en una interfaz cerebro-computador,” Universidad Santo Tomás , 2020. Accessed: Aug. 16, 2022. [Online]. Available: http://hdl.handle.net/11634/29868

C. González Rodríguez, J. S. Lasprilla Hincapié, I. en Mecatrónica, and I. en Mecatrónica, “Manipulation of robotic arm with EEG signal,” Jun. 2017, Accessed: Aug. 16, 2022. [Online]. Available: https://repository.unimilitar.edu.co/handle/10654/16901#.YvzyComU7jg.mendeley

L. A. Fernández Motta and I. en Mecatrónica, “Sistema de control de trayectoria en manipulador de cinco grados de libertad utilizando sensor Emotiv,” Aug. 2014, Accessed: Aug. 16, 2022. [Online]. Available: https://repository.unimilitar.edu.co/handle/10654/12475#.YvzySrbNx2E.mendeley

C. A. Cáceres Flórez and I. en Mecatrónica, “Implementación de un sensor de electroencefalograma (EEG) en aplicaciones domóticas,” Jul. 2013, Accessed: Aug. 16, 2022. [Online]. Available: https://repository.unimilitar.edu.co/handle/10654/11700#.Yvzyduwg3Cg.mendeley

J. S. Ramírez Archila, “Detección de intención motora empleando técnicas de aprendizaje automático,” Trabajo de grado, Escuela Colombiana de Ingeniería Julio Garavito, Bogotá, 2020. Accessed: Aug. 16, 2022. [Online]. Available: https://repositorio.escuelaing.edu.co/handle/001/1279

J. R. Arciniegas Polanco, “Pruebas de concepto para prótesis de miembro superior mediante herramientas de comunicación BCI,” instname:Universidad de los Andes, 2014, Accessed: Aug. 16, 2022. [Online]. Available: http://hdl.handle.net/1992/20133

J. S. Tigreros Niño, “Algoritmo para la clasificación de ondas cerebrales mediante técnicas de aprendizaje profundo enfocado en el movimiento de miembros inferiores haciendo uso de una interfaz cerebro-máquina,” Trabajo de grado, Universidad Autónoma de Bucaramanga, Bucaramanga, 2020. Accessed: Aug. 16, 2022. [Online]. Available: http://hdl.handle.net/20.500.12749/13898

Á. M. Gamba Cárdenas, “Diseño e implementación de una interfaz cerebro-máquina (BCI) para la identificación de tareas cognitivas, a partir de señales de EEG adquiridas con sistemas portátiles,” instname:Universidad de los Andes, 2013, Accessed: Aug. 16, 2022. [Online]. Available: http://hdl.handle.net/1992/19414

J. Salguero López and I. en Mecatrónica, “Diseño de un prototipo de sistema de comunicación personal mediante el uso de señales de electroencefalografía (EEG),” Dec. 2015, Accessed: Aug. 16, 2022. [Online]. Available: https://repository.unimilitar.edu.co/handle/10654/7476#.Yvz0g_H7CrU.mendeley

J. S. Useche Parra, “Desarrollo de un sistema de adquisición de EEG, para estimulación y procesamiento de potenciales visuales evocados en estado estable sobre una plataforma móvil, con aplicación a juegos didácticos,” instname:Universidad de los Andes, 2016, Accessed: Aug. 16, 2022. [Online]. Available: http://hdl.handle.net/1992/15667

E. Hortal, Brain-Machine Interfaces for Assistance and Rehabilitation of People with Reduced Mobility. Cham: Springer International Publishing, 2019. doi: 10.1007/978-3-319-95705-0.

J. DECETY and M. LINDGREN, “Sensation of effort and duration of mentally executed actions,” Scand J Psychol, vol. 32, no. 2, pp. 97–104, Jun. 1991, doi: 10.1111/j.1467-9450.1991.tb00860.x.

M. Memari, M. M. Sakhaee, M. H. Nadian, A. Taheri, and A. Ghazizadeh, “Design and Manufacture of a Guided Mechanical Arm by EEG Signals,” in 9th RSI International Conference on Robotics and Mechatronics, ICRoM 2021, 2021, pp. 574–579. doi: 10.1109/ICRoM54204.2021.9663472.

M. Aljalal, R. Djemal, and S. Ibrahim, “Robot Navigation Using a Brain Computer Interface Based on Motor Imagery,” J Med Biol Eng, vol. 39, no. 4, pp. 508–522, 2019, doi: 10.1007/s40846-018-0431-9.

J. S. Rani Alex, M. A. Haque, A. Anand, A. Gautam, and N. Venkatesan, “A deep learning approach for robotic arm control using brain-Computer interface,” International Journal of Biology and Biomedical Engineering, vol. 14, pp. 128–135, 2020, doi: 10.46300/91011.2020.14.18.

G. Gillini, P. D. Lillo, and F. Arrichiello, “An Assistive Shared Control Architecture for a Robotic Arm Using EEG-Based BCI with Motor Imagery,” in IEEE International Conference on Intelligent Robots and Systems, 2021, pp. 4132–4137. doi: 10.1109/IROS51168.2021.9636261.

P. Batres-Mendoza, E. I. Guerra-Hernandez, A. Espinal, E. Perez-Careta, and H. Rostro-Gonzalez, “Biologically-Inspired Legged Robot Locomotion Controlled with a BCI by Means of Cognitive Monitoring,” IEEE Access, vol. 9, pp. 35766–35777, 2021, doi: 10.1109/ACCESS.2021.3062329.

Y. Liu, M. Habibnezhad, and H. Jebelli, “Brain-computer interface for hands-free teleoperation of construction robots,” Autom Constr, vol. 123, 2021, doi: 10.1016/j.autcon.2020.103523.

G. Yu, J. Wang, W. Chen, and J. Zhang, “EEG-based brain-controlled lower extremity exoskeleton rehabilitation robot,” in 2017 IEEE International Conference on Cybernetics and Intelligent Systems, CIS 2017 and IEEE Conference on Robotics, Automation and Mechatronics, RAM 2017 - Proceedings, 2018, pp. 763–767. doi: 10.1109/ICCIS.2017.8274875.

A. Ak, V. Topuz, and I. Midi, “Motor imagery EEG signal classification using image processing technique over GoogLeNet deep learning algorithm for controlling the robot manipulator,” Biomed Signal Process Control, vol. 72, p. 103295, Feb. 2022, doi: 10.1016/j.bspc.2021.103295.

E. Quiles, F. Suay, G. Candela, N. Chio, M. Jiménez, and L. Álvarez-Kurogi, “Low-Cost Robotic Guide Based on a Motor Imagery Brain–Computer Interface for Arm Assisted Rehabilitation,” Int J Environ Res Public Health, vol. 17, no. 3, p. 699, Jan. 2020, doi: 10.3390/ijerph17030699.

Neuroelectrics, “Neuroelectrics User Manual, Part 3. NIC2,” 2022. https://www.neuroelectrics.com/api/downloads/NE_P3_UM004_EN_NIC2.1.0_1.pdf (accessed Oct. 29, 2022).

A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” J Neurosci Methods, vol. 134, no. 1, pp. 9–21, 2004, doi: https://doi.org/10.1016/j.jneumeth.2003.10.009.

Delorme A and Makeig S, “EEGLAB preprocessing #4: Filtering,” 2019. https://eeglab.org/others/EEGLAB_References.html (accessed Jun. 04, 2023).

MathWorks, “Robotics System Toolbox Support Package for Universal Robots UR Series Manipulators ,” 2023. https://la.mathworks.com/help/supportpkg/urseries/index.html?s_tid=CRUX_lftnav (accessed May 29, 2023).

Universal Robots, “Universal Robots ROS driver supporting CB3 and e-Series,” 2023. https://github.com/UniversalRobots/Universal_Robots_ROS_Driver (accessed May 29, 2023).

Mathworks, “inverseKinematics,” 2023. https://la.mathworks.com/help/robotics/ref/inversekinematics-system-object.html (accessed May 29, 2023).