Design of a prototype for the qualitative assessment of the biodegradability of agro-industrial polymer wastes: Case study on "totumo" (Crescentia cujete)

Main Article Content

Raúl Sánchez
Yineer Castillo
https://orcid.org/0000-0002-6411-4934
Javier Muñoz

Abstract

This article addresses the growing concern for industrial waste management and the evaluation of biodegradability of materials, focusing on cattail (Crescentia cujete). An automated system for monitoring gases (CO and CO2) and temperature was developed to assess biodegradability. Over a period of 20 days, CO2 and CO emissions were recorded and correlated with fungal growth in the totumo samples. Peak CO2 emission was observed at 76 hours, indicating microbial activity. In addition, particle size and thermal treatments were found to affect biodegradability, with smaller sizes and higher temperatures being beneficial. Despite its semi-crystalline cellulose content, which presents some resistance, totumo is estimated to have a degradation rate similar to other non-timber lignocellulosic residues such as corn, sugarcane, banana, and coffee. This suggests that totumo has the potential to produce biodegradable polymers and biogas, contributing to a more sustainable management of agroindustrial wastes.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sánchez, R., Castillo, Y., & Muñoz, J. (2023). Design of a prototype for the qualitative assessment of the biodegradability of agro-industrial polymer wastes: Case study on "totumo" (Crescentia cujete). I+ T+ C- Research, Technology and Science, 1(17). Retrieved from https://revistas.unicomfacauca.edu.co/ojs/index.php/itc/article/view/405
Section
Research Papers

References

M. L. Segatto, A. M. Stahl, K. Zanotti, and V. G. Zuin, “Green and sustainable extraction of proteins from agro-industrial waste: An overview and a closer look to Latin America,” Curr. Opin. Green Sustain. Chem., vol. 37, p. 100661, Oct. 2022, doi: 10.1016/j.cogsc.2022.100661.

S. Bala et al., “Transformation of Agro-Waste into Value-Added Bioproducts and Bioactive Compounds: Micro/Nano Formulations and Application in the Agri-Food-Pharma Sector,” Bioengineering, vol. 10, no. 2, p. 152, Jan. 2023, doi: 10.3390/bioengineering10020152.

A. R. G. de Azevedo et al., “Possibilities for the application of agro-industrial wastes in cementitious materials: A brief review of the Brazilian perspective,” Clean. Mater., vol. 3, no. October 2021, p. 100040, 2022, doi: 10.1016/j.clema.2021.100040.

A. Samir, F. H. Ashour, A. A. A. Hakim, and M. Bassyouni, “Recent advances in biodegradable polymers for sustainable applications,” npj Mater. Degrad., vol. 6, no. 1, 2022, doi: 10.1038/s41529-022-00277-7.

O. Utria, P. Meza Castellar, and L. Bossa, “Evaluación de pulpa de totumo (Crescentia cujete L), matarratón (Gliricidia sepium) y sal (Cloruro de sodio) en la formulación de un ensilaje para el incremento del contenido protéico como alternativa en alimentación bovina,” Rev. Ing-Nova, vol. 2, no. 1, pp. 34–42, Jan. 2023, doi: 10.32997/rin-2023-4261.

A. Blasi, A. Verardi, C. G. Lopresto, S. Siciliano, and P. Sangiorgio, “Lignocellulosic Agricultural Waste Valorization to Obtain Valuable Products: An Overview,” Recycling, vol. 8, no. 4, pp. 1–46, 2023, doi: 10.3390/recycling8040061.

C. I. Riofrio Álvarez, C. M. Oviedo Navarrete, and D. M. Navarro Cedeño, “Importancia De Productos Biodegradables En Ecuador,” Rev. Obs. la Econ. Latinoam., pp. 1–9, 2019, [Online]. Available: https://www.eumed.net/rev/oel/2019/06/productos-biodegradables-ecuador.html

D. . Millán. F, “Diseño e implementación de un sistema de medida de gases con Arduino,” Escuela Universitaria Politécnica de Terue, 2016. [Online]. Available: https://zaguan.unizar.es/record/59102/files/TAZ-TFG-2016-2689.pdf

N. S. of Climate, “CO2. earth.” https://www.co2.earth/ (accessed Oct. 15, 2022).

P. L. Guerrero-Ortiz, R. Quintero-Lizaola, V. Espinoza-Hernández, G. S. Benedicto-Valdés, and M. de J. Sánchez-Colín, “Respiración de CO2 como indicador de la actividad microbiana en abonos orgánicos de Lupinus,” Terra Latinoam., vol. 30, no. 4, pp. 355–362, 2012.

M. Peinado, “Estudio de la biodegradabilidad y desintegración de películas a base de almidón y PVA que incorporan diferentes sustancias antimicrobianas,” Univ. Politecnica de Valencia, 2015.

J. E. Espitia, H. del R. Duran, J. Fandiño, F. Díaz, and H. A. Gómez, “Química y biología del extracto etanólico del epicarpio de Crescentia cujete L. (totumo),” Rev. Cuba. Plantas Med., vol. 16, no. 4, pp. 337–346, 2011.

H. Portilla, “H. Amilicar, Evaluación de porcentaje de biodegradación aerobia de dos materiales de empaques laborados a partir de almidon y harina de yuca,” UNIVERSIDAD DEL CAUCA, 2019. [Online]. Available: http://repositorio.unicauca.edu.co:8080/xmlui/bitstream/handle/123456789/1464/EVALUACIÓN DEL PORCENTAJE DE BIODEGRADACIÓN AEROBIA DE DOS MATERIALES DE EMPAQUE ELABORADOS A PARTIR DE ALMIDÓN Y HARINA DE YUCA.pdf?sequence=1&isAllowed=y

D. Araújo, M. C. R. Castro, A. Figueiredo, M. Vilarinho, and A. Machado, “Green synthesis of cellulose acetate from corncob: Physicochemical properties and assessment of environmental impacts,” J. Clean. Prod., vol. 260, p. 120865, Jul. 2020, doi: 10.1016/j.jclepro.2020.120865.

R. V. Prabhavathi. N, “Effect of sugar industry solid waste pressmud and bio compost on soil physical and chemical properties at different intervals during finger millet crop,” J. Pharmacogn. Phytochem. Press., vol. 8, no. 3, pp. 3038–3042, 2019.

S. N. Shafawati and S. Siddiquee, “Composting of oil palm fibres and Trichoderma spp. As the biological control agent: A review,” Int. Biodeterior. Biodegrad., vol. 85, pp. 243–253, 2013, doi: 10.1016/j.ibiod.2013.08.005.

A. S. C. de Bomfim et al., “Spent Coffee Grounds Characterization and Reuse in Composting and Soil Amendment,” Waste, vol. 1, no. 1, pp. 2–20, 2022, doi: 10.3390/waste1010002.