Exploitation of agro-industrial wastes: Chemical and physical treatments of coconut fibers with potential use in composite materials Status: In press

Main Article Content

Eduardo Argote Ortiz
https://orcid.org/0009-0002-4461-2255
Pedro Alban Bolaños
https://orcid.org/0000-0001-6473-0756
Elsa Susana Cajiao Buitrón
Héctor Samuel Villada Castillo
https://orcid.org/0000-0002-5557-3215

Abstract

The growing demand for plastics and their poor end-of-life management has prompted the search for sustainable alternatives, such as natural fiber-reinforced composites. Fibers, such as coconut fibers, have been shown to improve these compounds' properties significantly. In this study, natural coir fibers (NCF) treated with different chemical and physical processes, such as sodium hydroxide (NaOH), sodium hypochlorite (NaOCl), and ultrasound (U), were analyzed. Structural, morphological and water absorption properties were tested by infrared spectroscopy, water absorption and X-ray diffraction tests. These indicated that treated fibers show a decrease or loss of transmittance bands associated with lignin, hemicellulose and a higher concentration of cellulose bands. Thus, higher water absorption and an increase in the crystallinity index were observed, which enhances its reinforcing capacity and improves the interaction between a polymeric matrix and the fibers. It also highlights the potential for the use of agroindustrial waste under a circular economy approach, promoting its incorporation into new sustainable products.

Downloads

Download data is not yet available.

Article Details

How to Cite
Argote Ortiz , E. ., Alban Bolaños , P., Cajiao Buitrón , E. S. ., & Villada Castillo, H. S. . (2024). Exploitation of agro-industrial wastes: Chemical and physical treatments of coconut fibers with potential use in composite materials: Status: In press. I+ T+ C- Research, Technology and Science, 1(18). Retrieved from https://revistas.unicomfacauca.edu.co/ojs/index.php/itc/article/view/460
Section
In-press

References

A. Surendren, A. K. Mohanty, Q. Liu, and M. Misra, “A review of biodegradable thermoplastic starches, their blends and composites: recent developments and opportunities for single-use plastic packaging alternatives,” 2022, Royal Society of Chemistry. doi: 10.1039/d2gc02169b.

M. Selvaraj, N. Pannirselvam, P. T. Ravichandran, B. Mylsamy, and S. Samson, “Extraction and Characterization of a New Natural Cellulosic Fiber from Bark of Ficus Carica Plant as Potential Reinforcement for Polymer Composites,” Journal of Natural Fibers, vol. 20, no. 2, 2023, doi: 10.1080/15440478.2023.2194699.

A. Zamboulis, E. Xanthopoulou, I. Chrysafi, C. Lorenzo, and D. N. Bikiaris, “Poly(ethylene succinate)/hemp fiber composites: Fully biobased materials with improved thermal and biodegradation properties,” Sustainable Chemistry for the Environment, vol. 4, p. 100045, Dec. 2023, doi: 10.1016/j.scenv.2023.100045.

M. A. Mahmud, N. Abir, F. R. Anannya, A. Nabi Khan, A. N. M. M. Rahman, and N. Jamine, “Coir fiber as thermal insulator and its performance as reinforcing material in biocomposite production,” May 01, 2023, Elsevier Ltd. doi: 10.1016/j.heliyon.2023.e15597.

S. Rodríguez-Fabià, C. Zarna, and G. Chinga-Carrasco, “A comparative study of kraft pulp fibres and the corresponding fibrillated materials as reinforcement of LDPE- and HDPE-biocomposites,” Compos Part A Appl Sci Manuf, vol. 173, Oct. 2023, doi: 10.1016/j.compositesa.2023.107678.

B. M. Bright et al., “Characterization of Natural Cellulosic Fiber from Cocos nucifera Peduncle for Sustainable Biocomposites,” Journal of Natural Fibers, vol. 19, no. 14, pp. 9373–9383, 2022, doi: 10.1080/15440478.2021.1982827.

K. N. Bharath et al., “Study of Treatment Effect on the Cocos Nucifera Lignocellulosic Fibers as Alternative for Polymer Composites,” Journal of Natural Fibers, vol. 20, no. 1, 2023, doi: 10.1080/15440478.2022.2134257.

M. K. Marichelvam, K. Kandakodeeswaran, and M. Geetha, “Mechanical and Acoustic properties of Bagasse–Coconut Coir based Hybrid Reinforced Composites,” Journal of Natural Fibers, vol. 19, no. 11, pp. 4105–4114, 2022, doi: 10.1080/15440478.2020.1854143.

G. Kannan and R. Thangaraju, “Evaluation of Tensile, Flexural and Thermal Characteristics on Agro-Waste Based Polymer Composites Reinforced with Banana Fiber/Coconut Shell Filler,” Journal of Natural Fibers, vol. 20, no. 1, 2023, doi: 10.1080/15440478.2022.2154630.

N. I. N. Haris, M. Z. Hassan, and R. A. Ilyas, “Crystallinity, Chemical, Thermal, and Dynamic Mechanical Properties of Rice Husk/Coco Peat Fiber Reinforced ABS Biocomposites,” Journal of Natural Fibers, vol. 19, no. 16, pp. 13753–13764, 2022, doi: 10.1080/15440478.2022.2106339.

T. S. Gomez, S. Zuluaga Palacio, M. C. Salazár Marín, A. F. Peñuela, and P. Fernández Morales, “Comportamiento mecánico de fibras y no tejidos de coco. Comparación entre parámetros de punzonado y adhesión química,” Avances Investigación en Ingeniería, vol. 17, no. 1, Apr. 2020, doi: 10.18041/1794-4953/avances.1.5255.

W. Nansu, S. Ross, G. Ross, and S. Mahasaranon, “Coconut residue fiber and modified coconut residue fiber on biodegradable composite foam properties,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 3594–3599. doi: 10.1016/j.matpr.2021.03.623.

A. Parra-Campos, L. Serna-Cock, and J. F. Solanilla-Duque, “Effect of the addition of fique bagasse microparticles in obtaining a biobased material based on cassava starch,” Int J Biol Macromol, vol. 207, pp. 289–298, May 2022, doi: 10.1016/j.ijbiomac.2022.03.016.

I. Sifuentes-Nieves et al., “Biobased sustainable materials made from starch and plasma/ultrasound modified Agave fibers: Structural and water barrier performance,” Int J Biol Macromol, vol. 193, pp. 2374–2381, Dec. 2021, doi: 10.1016/j.ijbiomac.2021.11.071.

C. Moreno, L. E.?; Trujillo, E. E.?; Osorio, and L. Rocio, “Estudio de las características físicas de haces de fibra de Guadua Angustifolia,” Scientia Et Technica, vol. XIII, no. ISSN 0122-1701, pp. 613–618, May 2007, [Online]. Available: http://www.redalyc.org/articulo.oa?id=84934104

F. A. Gonçalves, H. A. Ruiz, E. Silvino dos Santos, J. A. Teixeira, and G. R. de Macedo, “Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept,” Renew Energy, vol. 94, pp. 353–365, Aug. 2016, doi: 10.1016/j.renene.2016.03.045.

L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, “An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer,” Textile Research Journal, vol. 29, pp. 786–794, Mar. 1959, doi: doi:10.1177/004051755902901003.

A. K. Balan, S. Mottakkunnu Parambil, S. Vakyath, J. Thulissery Velayudhan, S. Naduparambath, and P. Etathil, “Coconut shell powder reinforced thermoplastic polyurethane/natural rubber blend-composites: effect of silane coupling agents on the mechanical and thermal properties of the composites,” J Mater Sci, vol. 52, no. 11, pp. 6712–6725, Jun. 2017, doi: 10.1007/s10853-017-0907-y.

F. A. Gonçalves, H. A. Ruiz, C. D. C. Nogueira, E. S. Dos Santos, J. A. Teixeira, and G. R. De Macedo, “Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies,” Fuel, vol. 131, pp. 66–76, Sep. 2014, doi: 10.1016/j.fuel.2014.04.021.

R. Arun, R. Shruthy, R. Preetha, and V. Sreejit, “Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging,” Chemosphere, vol. 291, Mar. 2022, doi: 10.1016/j.chemosphere.2021.132786.

Y. Leow et al., “A tough, biodegradable and water-resistant plastic alternative from coconut husk,” Compos B Eng, vol. 241, Jul. 2022, doi: 10.1016/j.compositesb.2022.110031.

S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, “Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance,” Biotechnology for Biofuels , vol. 3, pp. 1–10, 2010, doi: doi: 10.1186/1754-6834-3-10.

F. A. Fedin, H. Mohan, S. Thomas, and J. Kochupurackal, “Synthesis and characterization of nanocelluloses isolated through acidic hydrolysis and steam explosion of Gliricidia sepium plant fiber,” Biomass Convers Biorefin, 2024, doi: 10.1007/s13399-024-05812-x.

T. Tenaye, S. A. Mohammed, and S. A. Jabasingh, “Sustainable synthesis and characterization of Enset cellulose nanocrystals (E-CNp) from Enset ventricosum biomass and its application in the fabrication of Enset cellulose nanocomposite (E-CNc),” Biomass Convers Biorefin, vol. 14, no. 4, pp. 5019–5034, Feb. 2024, doi: 10.1007/s13399-022-02682-z.

A. S. Aridi et al., “Effect of Sodium Hypochlorite Concentration during Pre-treatment on Isolation of Nanocrystalline Cellulose from Leucaena leucocephala (Lam.) Mature Pods,” Bioresources, vol. 16, pp. 3137–3158, 2021.

T. Gabriel, A. Belete, G. Hause, R. H. H. Neubert, and T. Gebre-Mariam, “Isolation and Characterization of Cellulose Nanocrystals from Different Lignocellulosic Residues: A Comparative Study,” J Polym Environ, vol. 29, no. 9, pp. 2964–2977, Sep. 2021, doi: 10.1007/s10924-021-02089-3.

P. J. Kallappa, P. G. Kalleshappa, B. B. Eshwarappa, S. Basavarajappa, V. S. Betageri, and B. K. Devendra, “Synthesis of cellulose nanofibers from lignocellulosic materials and their photocatalytic dye degradation studies,” Int Nano Lett, vol. 13, no. 3–4, pp. 261–272, Dec. 2023, doi: 10.1007/s40089-023-00402-7.

M. Chávez Sifontes and M. E. Domine, “Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial,” Avances en Ciencias e Ingeniería, vol. 4, no. 4, pp. 15–46, Oct. 2013, [Online]. Available: http://www.exeedu.com/publishing.cl/av_cienc_ing/15

G. F. Schutz, S. de Ávila Gonçalves, R. M. V. Alves, and R. P. Vieira, “A review of starch-based biocomposites reinforced with plant fibers,” Mar. 01, 2024, Elsevier B.V. doi: 10.1016/j.ijbiomac.2024.129916.

H. Bui, N. Sebaibi, M. Boutouil, and D. Levacher, “Determination and review of physical and mechanical properties of raw and treated coconut fibers for their recycling in construction materials,” Fibers, vol. 8, no. 6, Jun. 2020, doi: 10.3390/FIB8060037.

F. G. De Souza, L. O. Paiva, R. C. Michel, and G. E. De Oliveira, “Modificação da Fibra de Coco com Polianilina e o seu Uso como Sensor de Pressão,” Polímeros, vol. 21, pp. 39–46, 2011.

A. Fatmawati, T. Nurtono, and A. Widjaja, “Thermogravimetric kinetic-based computation of raw and pretreated coconut husk powder lignocellulosic composition,” Bioresour Technol Rep, vol. 22, Jun. 2023, doi: 10.1016/j.biteb.2023.101500.

P. Boonsuk et al., “Structure-properties relationships in alkaline treated rice husk reinforced thermoplastic cassava starch biocomposites,” Int J Biol Macromol, vol. 167, pp. 130–140, Jan. 2021, doi: 10.1016/j.ijbiomac.2020.11.157.