Evaluation of the Biological and Chemical Stability of Different Composts as Inoculum in Aerobic Biodegradation Tests In Press

Main Article Content

Ronaldo Ademir Bonilla Laguado
https://orcid.org/0009-0007-7303-3187
Héctor Samuel Villada Castillo
https://orcid.org/0000-0002-5557-3215
Jhon Jairo Palechor Trochez
https://orcid.org/0000-0003-4756-2812

Abstract

The biological and chemical stability of compost is essential in biodegradation tests for plastic materials. This study evaluated the biological and chemical stability of three composts with different compositions and origins: Finca La Rejoya, Granja Integral Mamá Lombriz, and a commercial compost (Abonisa). Biological stability was assessed through a germination test using native corn seeds, tolerance tests with wheat seedlings (evaluating seed yield, plant height, root length, and chlorophyll index), and quantification of carbon dioxide (CO?) production. Chemical stability was analyzed by measuring total organic carbon (TOC), nitrogen content, carbon/nitrogen (C/N) ratio, total solids (TS), volatile solids (VS), and pH. The results revealed statistically significant differences among the composts. The compost from Finca La Rejoya exhibited optimal conditions, with a germination rate of 88.89%, a seed yield of 95.74%, the highest chlorophyll index (1.83), the lowest CO? production (150.26 mL after 48 hours), a C/N ratio of 13.36, and a pH of 7.11. This study emphasizes the importance of evaluating compost stability before using it in aerobic biodegradation tests and concludes that the compost from Finca La Rejoya is the most suitable as an inoculum for such applications

Downloads

Download data is not yet available.

Article Details

How to Cite
Bonilla Laguado, R. A., Villada Castillo, H. S., & Palechor Trochez, J. J. (2024). Evaluation of the Biological and Chemical Stability of Different Composts as Inoculum in Aerobic Biodegradation Tests: In Press. I+ T+ C- Research, Technology and Science, 1(18). Retrieved from https://revistas.unicomfacauca.edu.co/ojs/index.php/itc/article/view/480
Section
In-press

References

M. K. Manu, R. Kumar, and A. Garg, “Effect of Microbial Inoculum and Leachate Circulation on the Performance of Rotary Drum Composter Used for Household Wet Biodegradable Waste,” Waste Biomass Valorization, vol. 12, no. 11, pp. 6119–6137, Nov. 2021, doi: 10.1007/s12649-021-01430-0.

G. Dolci, M. Intilisano, F. Fava, V. Venturelli, F. Malpei, and M. Grosso, “Degradation of paper-based boxes for food delivery in composting and anaerobic digestion tests,” Bioresour Technol, vol. 408, Sep. 2024, doi: 10.1016/j.biortech.2024.131212.

H. Li et al., “Effect of microbial inoculum on composting efficiency in the composting process of spent mushroom substrate and chicken manure,” J Environ Manage, vol. 353, Feb. 2024, doi: 10.1016/j.jenvman.2024.120145.

K. Zhao et al., “Optimizing the management of aerobic composting for antibiotic resistance genes elimination: A review of future strategy for livestock manure resource utilization,” Nov. 01, 2024, Academic Press. doi: 10.1016/j.jenvman.2024.122766.

M. Wu et al., “Deciphering the driving mechanism of microbial community for rapid stabilization and lignocellulose degradation during waste semi-aerobic bioreactor landfilling with multifunctional microbial inoculum,” Waste Management, vol. 194, pp. 88–103, Feb. 2025, doi: 10.1016/j.wasman.2025.01.007.

R. Altieri, M. Seggiani, A. Esposito, P. Cinelli, and V. Stanzione, “Thermoplastic Blends Based on Poly(Butylene Succinate-co-Adipate) and Different Collagen Hydrolysates from Tanning Industry—II: Aerobic Biodegradation in Composting Medium,” J Polym Environ, vol. 29, no. 10, pp. 3375–3388, Oct. 2021, doi: 10.1007/s10924-021-02124-3.

J. J. Palechor-Tróchez, H. S. V. Castillo, L. Serna-Cock, and J. F. S. Duque, “Thermal and structural changes of a starch flexible film and cellulosic semi-rigid tray during the biodegradation process under controlled composting conditions,” Int J Biol Macromol, vol. 279, Nov. 2024, doi: 10.1016/j.ijbiomac.2024.134595.

Y. Luo, J. Shen, X. Wang, H. Xiao, A. Z. Yaser, and J. Fu, “Recent advances in research on microbial community in the composting process,” Oct. 01, 2023, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s13399-023-04616-9.

A. D. Tripathi, K. Khosravi Darani, D. C. Rai, and V. Paul, Biodegradable Polymer-Based Food Packaging. Springer Nature, 2022. doi: 10.1007/978-981-19-5743-7.

D. P. Sethy and S. Sahoo, “A comprehensive review on different leaf fiber loading on PLA polymer matrix composite,” 2024, SAGE Publications Ltd. doi: 10.1177/08927057241268832.

J. Barbir et al., “Assessing ecotoxicity of an innovative bio-based mulch film: a multi-environmental and multi-bioassay approach,” Front Environ Sci, vol. 11, 2023, doi: 10.3389/fenvs.2023.1171261.

I. Heisterkamp, M. Ratte, U. Schoknecht, S. Gartiser, U. Kalbe, and O. Ilvonen, “Ecotoxicological evaluation of construction products: inter-laboratory test with DSLT and percolation test eluates in an aquatic biotest battery,” Environ Sci Eur, vol. 33, no. 1, Dec. 2021, doi: 10.1186/s12302-021-00514-x.

F. Núñez, M. Pérez, L. F. Leon-Fernández, J. L. García-Morales, and F. J. Fernández-Morales, “Effect of the mixing ratio on the composting of OFMSW digestate: assessment of compost quality,” J Mater Cycles Waste Manag, vol. 24, no. 5, pp. 1818–1831, Sep. 2022, doi: 10.1007/s10163-022-01438-1.

M. J. Tahsini, M. Nikaeen, and A. H. Nafez, “Biological treatment of compost leachate: Assessing the efficacy of composting process and bioaugmentation of composting piles,” Environ Technol Innov, vol. 36, Nov. 2024, doi: 10.1016/j.eti.2024.103859.

E. Ghouili et al., “Date palm waste compost promotes plant growth and nutrient transporter genes expression in barley (Hordeum vulgare L.),” South African Journal of Botany, vol. 149, pp. 247–257, Sep. 2022, doi: 10.1016/j.sajb.2022.06.018.

L. D. Phung, S. Sao, S. D. Afriani, A. Kumar, and T. Watanabe, “ZnO nanoparticles in composted sewage sludge enhance soil fertility and rice nutrition but elevate As and Pb accumulation,” J Environ Chem Eng, vol. 12, no. 5, Oct. 2024, doi: 10.1016/j.jece.2024.113606.

S. Asante-Okyere, S. A. Marfo, and Y. Y. Ziggah, “Estimating total organic carbon (TOC) of shale rocks from their mineral composition using stacking generalization approach of machine learning,” Upstream Oil and Gas Technology, vol. 11, Sep. 2023, doi: 10.1016/j.upstre.2023.100089.

A. Pude?ko and M. Chodak, “Estimation of total nitrogen and organic carbon contents in mine soils with NIR reflectance spectroscopy and various chemometric methods,” Geoderma, vol. 368, Jun. 2020, doi: 10.1016/j.geoderma.2020.114306.

M. Schlemmera et al., “Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels,” International Journal of Applied Earth Observation and Geoinformation, vol. 25, no. 1, pp. 47–54, 2013, doi: 10.1016/j.jag.2013.04.003.

F. Rasouli et al., “One size does not fit all: Different strategies employed by triticale and barley plants to deal with soil salinity,” Environ Exp Bot, vol. 218, Feb. 2024, doi: 10.1016/j.envexpbot.2023.105585.

L. Salis, A. Cabiddu, F. Sanna, M. Sitzia, and G. Carboni, “Municipal solid waste compost use can improve crop barley production and enhance soil chemical fertility,” European Journal of Agronomy, vol. 153, Feb. 2024, doi: 10.1016/j.eja.2023.127064.

D. Baskaran and R. Rajamanickam, “Aerobic biodegradation of trichloroethylene by consortium microorganism from turkey litter compost,” J Environ Chem Eng, vol. 7, no. 4, Aug. 2019, doi: 10.1016/j.jece.2019.103260.

K. E. Anyaoha, R. Maletz, A. Rückert, and C. Dornack, “Potentials for microalgae sequestration of carbon dioxide (CO2) from composting off-gas; a review,” Oct. 01, 2024, Elsevier Inc. doi: 10.1016/j.rcradv.2024.200213.

M. Yang et al., “New insight into the spatio-temporal patterns of functional groups of hotspot inside the composting aggregates by synchrotron-based FTIR in hyperthermophilic composting,” Science of the Total Environment, vol. 945, Oct. 2024, doi: 10.1016/j.scitotenv.2024.174139.

W. Yang, Y. Zhong, Q. Zhuo, L. Xiao, G. Owens, and Z. Chen, “Enhanced copper passivation in pig manure composting through iron nanoparticle amendment,” Science of the Total Environment, vol. 958, Jan. 2025, doi: 10.1016/j.scitotenv.2024.177950.

E. Gastaldi, F. Buendia, P. Greuet, and S. Domenek, “Data on behavior and environmental impact of compostable packaging materials in full-scale industrial composting conditions,” Data Brief, vol. 57, p. 111102, Dec. 2024, doi: 10.1016/j.dib.2024.111102.

F. Ruggero, E. Carretti, R. Gori, T. Lotti, and C. Lubello, “Monitoring of degradation of starch-based biopolymer film under different composting conditions, using TGA, FTIR and SEM analysis.,” Chemosphere, vol. 246, May 2020, doi: 10.1016/j.chemosphere.2019.125770.

R. R. Hurley, A. L. Lusher, M. Olsen, and L. Nizzetto, “Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices,” Environ Sci Technol, vol. 52, no. 13, pp. 7409–7417, Jul. 2018, doi: 10.1021/acs.est.8b01517.

E. Niedrite, L. Klavins, L. Dobkevica, O. Purmalis, G. Ievinsh, and M. Klavins, “Sustainable control of invasive plants: Compost production, quality and effects on wheat germination,” J Environ Manage, vol. 371, Dec. 2024, doi: 10.1016/j.jenvman.2024.123149.

B. Shen et al., “Insights from meta-analysis on carbon to nitrogen ratios in aerobic composting of agricultural residues,” Bioresour Technol, vol. 413, Dec. 2024, doi: 10.1016/j.biortech.2024.131416.