Eficiencia de remoción de CBZ usando materiales adsorbentes obtenidos de residuos de la cadena de beneficio del café Status: In review
Contenido principal del artículo
Resumen
Los contaminantes emergentes farmacéuticos CEF en la actualidad han generado preocupación en la comunidad científica, debido a su potencial de afectar los ecosistemas acuáticos, uno de ellos es la Carbamazepina CBZ, considerado como contaminante de interés ambiental debido a que es recalcitrante y persistente a la degradación natural, razón por la cual, se han probado diferentes tecnologías para su remoción, donde la cascarilla de café se potencia como una alternativa de remediación ambiental a través de la generación de materiales adsorbentes. La presente investigación, se enfocó en evaluar la eficiencia de remoción de la carbamazepina utilizando materiales adsorbentes MA obtenidos de residuos de la cadena de beneficio de café. Se obtuvieron 20 MA mediante tratamientos físicos y químicos (en medio básico y ácido) y a diferentes temperaturas (600° y 900°C). Se realizaron perfiles de adsorción para determinar la capacidad del MA para remover CBZ y su eficiencia. Se caracterizó fisicoquímicamente el MA con mayor eficiencia en la eliminación del analito. Los resultados permitieron identificar que el material adsorbente en medio básico presentó capacidad de adsorción superior a 90 mg.g-1, así mismo, la caracterización evidenció la existencia de porosidad superficial que puede estar favoreciendo la remoción del CEF
Descargas
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Todos los textos publicados en esta revista se distribuyen bajo una Licencia Creative Commons «Reconocimiento-No Comercial-Compartir igual» desde 2020.
Citas
S. Dey, F. Bano, and A. Malik, “Pharmaceuticals and personal care product (PPCP) contamination-a global discharge inventory,” in Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology Emerging Contaminants and Micro Pollutants, Elsevier, 2019, pp. 1–26. doi: 10.1016/B978-0-12-816189-0.00001-9.
Maria. Pachés-Giner, “Contaminantes emergentes,” 2020, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. [Online]. Available: https://m.riunet.upv.es/bitstream/handle/10251/142675/Pachés - Contaminantes emergentes.pdf?sequence=1&isAllowed=y
M. E. Barocio et al., “Portable microfluidic devices for in-field detection of pharmaceutical residues in water: Recent outcomes and current technological situation – A short review,” Case Studies in Chemical and Environmental Engineering, vol. 3, Jun. 2021, doi: 10.1016/j.cscee.2020.100069.
Y. Qian et al., “Screening priority indicator pollutants in full-scale wastewater treatment plants by non-target analysis,” J Hazard Mater, vol. 414, no. October 2020, p. 125490, 2021, doi: 10.1016/j.jhazmat.2021.125490.
J. C. Leyva-Díaz, A. Batlles-Delafuente, V. Molina-Moreno, J. S. Molina, and L. J. Belmonte-Ureña, “Removal of pharmaceuticals from wastewater: Analysis of the past and present global research activities,” Water (Switzerland), vol. 13, no. 17, Sep. 2021, doi: 10.3390/w13172353.
E. H. Rdewi, K. K. Abbas, and A. M. H. AbdulkadhimAl-Ghaban, “Removal pharmaceutical carbamazepine from wastewater using ZnO-TiO2-MXene heterostructural nanophotocatalyst under solar light irradiation,” Mater Today Proc, vol. 60, pp. 1702–1711, 2022, doi: 10.1016/j.matpr.2021.12.229.
O. J. Ajala, J. O. Tijani, R. B. Salau, A. S. Abdulkareem, and O. S. Aremu, “A review of emerging micro-pollutants in hospital wastewater: Environmental fate and remediation options,” Results in Engineering, vol. 16, no. July, p. 100671, 2022, doi: 10.1016/j.rineng.2022.100671.
P. K. Akao, A. Kaplan, D. Avisar, A. Dhir, A. Avni, and H. Mamane, “Removal of carbamazepine, venlafaxine and iohexol from wastewater effluent using coupled microalgal–bacterial biofilm,” Chemosphere, vol. 308, no. August, 2022, doi: 10.1016/j.chemosphere.2022.136399.
A. Arredondo et al., “Toxicity and removal of pharmaceutical and personal care products: a laboratory scale study with tropical plants for treatment wetlands,” Water Science and Technology, vol. 85, no. 7, pp. 2240–2253, 2022, doi: 10.2166/wst.2022.099.
N. Delgado et al., “Occurrence and removal of pharmaceutical and personal care products using subsurface horizontal flow constructed wetlands,” Water Res, vol. 187, pp. 1–11, Dec. 2020, doi: 10.1016/j.watres.2020.116448.
S. Feijoo, M. Kamali, and R. Dewil, “A review of wastewater treatment technologies for the degradation of pharmaceutically active compounds?: Carbamazepine as a case study,” Chemical Engineering Journal, no. August, p. 140589, 2022, doi: 10.1016/j.cej.2022.140589.
M. Rigoletto, P. Calza, E. Gaggero, and E. Laurenti, “Hybrid materials for the removal of emerging pollutants in water: classification, synthesis, and properties,” Chemical Engineering Journal Advances, vol. 10, p. 100252, May 2022, doi: 10.1016/j.ceja.2022.100252.
M. P. Zhu, J. C. E. Yang, D. Delai Sun, B. Yuan, and M. L. Fu, “Deciphering the simultaneous removal of carbamazepine and metronidazole by monolithic Co2AlO4@Al2O3 activated peroxymonosulfate,” Chemical Engineering Journal, vol. 436, May 2022, doi: 10.1016/j.cej.2022.135201.
L. V. Peñaranda, S. P. Montenegro, and P. A. Giraldo, “Aprovechamiento de residuos agroindustriales en Colombia,” Revissta de Investigación Agraria y Ambiental, vol. 8, no. 2, pp. 141–150, 2017.
D. W. Cho, S. H. Cho, H. Song, and E. E. Kwon, “Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: A case study with spent coffee ground,” Bioresour Technol, vol. 189, pp. 1–6, 2015, doi: 10.1016/j.biortech.2015.04.002.
S. F. Jiang, G. P. Sheng, and H. Jiang, “Advances in the characterization methods of biomass pyrolysis products,” ACS Sustain Chem Eng, vol. 7, no. 15, pp. 12639–12655, 2019, doi: 10.1021/acssuschemeng.9b00868.
H. Laksaci, B. Belhamdi, O. Khelifi, A. Khelifi, and M. Trari, “Elimination of Amoxicillin by Adsorption on Coffee Waste Based Activated Carbon,” J Mol Struct, vol. 1274, p. 134500, 2022, doi: 10.1016/j.molstruc.2022.134500.
E. Mejía, “Biocarbón a partir de cascarilla de café para purificación de biodiésel obbtenido de aceite de fritura usado,” Maestría, Universidad de La Amazonía, 2022.
S. Sun, Q. Yu, M. Li, H. Zhao, and C. Wu, “Preparation of coffee-shell activated carbon and its application for water vapor adsorption,” Renew Energy, vol. 142, pp. 11–19, 2019, doi: 10.1016/j.renene.2019.04.097.
S. S. Choi, T. R. Choi, and H. J. Choi, “Surface Modification of Phosphoric Acid–activated Carbon in Spent Coffee Grounds to Enhance Cu(II) Adsorption from Aqueous Solutions,” Applied Chemistry for Engineering, vol. 32, no. 5, pp. 589–598, 2021, doi: 10.14478/ace.2021.1074.
K. K. Naganathan, A. N. M. Faizal, M. A. A. Zaini, and A. Ali, “Adsorptive removal of Bisphenol a from aqueous solution using activated carbon from coffee residue,” Mater Today Proc, vol. 47, pp. 1307–1312, 2021, doi: 10.1016/j.matpr.2021.02.802.
I. Neme, G. Gonfa, and C. Masi, “Preparation and characterization of activated carbon from castor seed hull by chemical activation with H3PO4,” Results in Materials, vol. 15, no. June, p. 100304, 2022, doi: 10.1016/j.rinma.2022.100304.
N. Y. Delgado, A. L. Capparelli, D. J. Marino, A. F. Navarro, G. A. Peñuela, and A. E. Ronco, “Adsorption of Pharmaceuticals and Personal Care Products on Granular Activated Carbon,” J Surf Eng Mater Adv Technol, vol. 06, no. 04, pp. 183–200, 2016, doi: 10.4236/jsemat.2016.64017.
F. R. Amin, Y. Huang, Y. He, R. Zhang, G. Liu, and C. Chen, “Biochar applications and modern techniques for characterization,” Clean Technol Environ Policy, vol. 18, no. 5, pp. 1457–1473, 2016, doi: 10.1007/s10098-016-1218-8.
H. Laksaci, A. Khelifi, M. Trari, and A. Addoun, “Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides,” J Clean Prod, vol. 147, pp. 254–262, 2017, doi: 10.1016/j.jclepro.2017.01.102.
M. Liu et al., “A critical review of biochar-based materials for the remediation of heavy metal contaminated environment: Applications and practical evaluations,” Science of the Total Environment, vol. 806, 2022, doi: 10.1016/j.scitotenv.2021.150531.
V. T. Nguyen, T. H. Nguyen, L. H. Dang, H. Vu-Quang, and N. Q. Tran, “Folate-Conjugated Chitosan-Pluronic P123 Nanogels: Synthesis and Characterizations towards Dual Drug Delivery,” J Nanomater, vol. 2019, pp. 1–15, 2019, doi: 10.1155/2019/1067821.