Evaluación de la estabilidad biológica y química de distintos compost como inóculo en ensayos de biodegradación aerobia. In Press

Contenido principal del artículo

Ronaldo Ademir Bonilla Laguado
https://orcid.org/0009-0007-7303-3187
Héctor Samuel Villada Castillo
https://orcid.org/0000-0002-5557-3215
Jhon Jairo Palechor Trochez
https://orcid.org/0000-0003-4756-2812

Resumen

La estabilidad biológica y química del compost es fundamental en las pruebas de biodegradación de materiales plásticos. En este estudio, se evaluaron tres compost de diferente composición y procedencia: Finca La Rejoya, Granja Integral Mamá Lombriz y un compost comercial (Abonisa). La estabilidad biológica se analizó mediante un ensayo de germinación con semillas de maíz nativas, pruebas de tolerancia de plántulas de trigo (evaluando rendimiento de semillas, altura, longitud de raíces e índice de clorofila) y la cuantificación de dióxido de carbono (CO?). La estabilidad química se determinó mediante el análisis de carbono orgánico total (COT), nitrógeno, relación carbono/nitrógeno (C/N), sólidos totales (SST), sólidos volátiles (STV) y pH. Los resultados mostraron diferencias significativas entre los compost evaluados. El compost de la Finca La Rejoya presentó condiciones óptimas, con un índice de germinación del 88,89%, rendimiento de semillas del 95,74%, el mayor índice de clorofila (1,83), menor generación de CO? (150,26 mL en 48 horas), una relación C/N de 13,36 y pH de 7,11. Este estudio destaca la importancia de evaluar previamente la estabilidad del compost antes de utilizarlo en pruebas de biodegradación aerobia y concluye que el compost de la Finca La Rejoya es el más adecuado como inóculo para estas aplicaciones.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Bonilla Laguado, R. A., Villada Castillo, H. S., & Palechor Trochez, J. J. (2024). Evaluación de la estabilidad biológica y química de distintos compost como inóculo en ensayos de biodegradación aerobia.: In Press. I+ T+ C- Investigación, Tecnología Y Ciencia, 1(18). Recuperado a partir de https://revistas.unicomfacauca.edu.co/ojs/index.php/itc/article/view/480
Sección
In-press

Citas

M. K. Manu, R. Kumar, and A. Garg, “Effect of Microbial Inoculum and Leachate Circulation on the Performance of Rotary Drum Composter Used for Household Wet Biodegradable Waste,” Waste Biomass Valorization, vol. 12, no. 11, pp. 6119–6137, Nov. 2021, doi: 10.1007/s12649-021-01430-0.

G. Dolci, M. Intilisano, F. Fava, V. Venturelli, F. Malpei, and M. Grosso, “Degradation of paper-based boxes for food delivery in composting and anaerobic digestion tests,” Bioresour Technol, vol. 408, Sep. 2024, doi: 10.1016/j.biortech.2024.131212.

H. Li et al., “Effect of microbial inoculum on composting efficiency in the composting process of spent mushroom substrate and chicken manure,” J Environ Manage, vol. 353, Feb. 2024, doi: 10.1016/j.jenvman.2024.120145.

K. Zhao et al., “Optimizing the management of aerobic composting for antibiotic resistance genes elimination: A review of future strategy for livestock manure resource utilization,” Nov. 01, 2024, Academic Press. doi: 10.1016/j.jenvman.2024.122766.

M. Wu et al., “Deciphering the driving mechanism of microbial community for rapid stabilization and lignocellulose degradation during waste semi-aerobic bioreactor landfilling with multifunctional microbial inoculum,” Waste Management, vol. 194, pp. 88–103, Feb. 2025, doi: 10.1016/j.wasman.2025.01.007.

R. Altieri, M. Seggiani, A. Esposito, P. Cinelli, and V. Stanzione, “Thermoplastic Blends Based on Poly(Butylene Succinate-co-Adipate) and Different Collagen Hydrolysates from Tanning Industry—II: Aerobic Biodegradation in Composting Medium,” J Polym Environ, vol. 29, no. 10, pp. 3375–3388, Oct. 2021, doi: 10.1007/s10924-021-02124-3.

J. J. Palechor-Tróchez, H. S. V. Castillo, L. Serna-Cock, and J. F. S. Duque, “Thermal and structural changes of a starch flexible film and cellulosic semi-rigid tray during the biodegradation process under controlled composting conditions,” Int J Biol Macromol, vol. 279, Nov. 2024, doi: 10.1016/j.ijbiomac.2024.134595.

Y. Luo, J. Shen, X. Wang, H. Xiao, A. Z. Yaser, and J. Fu, “Recent advances in research on microbial community in the composting process,” Oct. 01, 2023, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s13399-023-04616-9.

A. D. Tripathi, K. Khosravi Darani, D. C. Rai, and V. Paul, Biodegradable Polymer-Based Food Packaging. Springer Nature, 2022. doi: 10.1007/978-981-19-5743-7.

D. P. Sethy and S. Sahoo, “A comprehensive review on different leaf fiber loading on PLA polymer matrix composite,” 2024, SAGE Publications Ltd. doi: 10.1177/08927057241268832.

J. Barbir et al., “Assessing ecotoxicity of an innovative bio-based mulch film: a multi-environmental and multi-bioassay approach,” Front Environ Sci, vol. 11, 2023, doi: 10.3389/fenvs.2023.1171261.

I. Heisterkamp, M. Ratte, U. Schoknecht, S. Gartiser, U. Kalbe, and O. Ilvonen, “Ecotoxicological evaluation of construction products: inter-laboratory test with DSLT and percolation test eluates in an aquatic biotest battery,” Environ Sci Eur, vol. 33, no. 1, Dec. 2021, doi: 10.1186/s12302-021-00514-x.

F. Núñez, M. Pérez, L. F. Leon-Fernández, J. L. García-Morales, and F. J. Fernández-Morales, “Effect of the mixing ratio on the composting of OFMSW digestate: assessment of compost quality,” J Mater Cycles Waste Manag, vol. 24, no. 5, pp. 1818–1831, Sep. 2022, doi: 10.1007/s10163-022-01438-1.

M. J. Tahsini, M. Nikaeen, and A. H. Nafez, “Biological treatment of compost leachate: Assessing the efficacy of composting process and bioaugmentation of composting piles,” Environ Technol Innov, vol. 36, Nov. 2024, doi: 10.1016/j.eti.2024.103859.

E. Ghouili et al., “Date palm waste compost promotes plant growth and nutrient transporter genes expression in barley (Hordeum vulgare L.),” South African Journal of Botany, vol. 149, pp. 247–257, Sep. 2022, doi: 10.1016/j.sajb.2022.06.018.

L. D. Phung, S. Sao, S. D. Afriani, A. Kumar, and T. Watanabe, “ZnO nanoparticles in composted sewage sludge enhance soil fertility and rice nutrition but elevate As and Pb accumulation,” J Environ Chem Eng, vol. 12, no. 5, Oct. 2024, doi: 10.1016/j.jece.2024.113606.

S. Asante-Okyere, S. A. Marfo, and Y. Y. Ziggah, “Estimating total organic carbon (TOC) of shale rocks from their mineral composition using stacking generalization approach of machine learning,” Upstream Oil and Gas Technology, vol. 11, Sep. 2023, doi: 10.1016/j.upstre.2023.100089.

A. Pude?ko and M. Chodak, “Estimation of total nitrogen and organic carbon contents in mine soils with NIR reflectance spectroscopy and various chemometric methods,” Geoderma, vol. 368, Jun. 2020, doi: 10.1016/j.geoderma.2020.114306.

M. Schlemmera et al., “Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels,” International Journal of Applied Earth Observation and Geoinformation, vol. 25, no. 1, pp. 47–54, 2013, doi: 10.1016/j.jag.2013.04.003.

F. Rasouli et al., “One size does not fit all: Different strategies employed by triticale and barley plants to deal with soil salinity,” Environ Exp Bot, vol. 218, Feb. 2024, doi: 10.1016/j.envexpbot.2023.105585.

L. Salis, A. Cabiddu, F. Sanna, M. Sitzia, and G. Carboni, “Municipal solid waste compost use can improve crop barley production and enhance soil chemical fertility,” European Journal of Agronomy, vol. 153, Feb. 2024, doi: 10.1016/j.eja.2023.127064.

D. Baskaran and R. Rajamanickam, “Aerobic biodegradation of trichloroethylene by consortium microorganism from turkey litter compost,” J Environ Chem Eng, vol. 7, no. 4, Aug. 2019, doi: 10.1016/j.jece.2019.103260.

K. E. Anyaoha, R. Maletz, A. Rückert, and C. Dornack, “Potentials for microalgae sequestration of carbon dioxide (CO2) from composting off-gas; a review,” Oct. 01, 2024, Elsevier Inc. doi: 10.1016/j.rcradv.2024.200213.

M. Yang et al., “New insight into the spatio-temporal patterns of functional groups of hotspot inside the composting aggregates by synchrotron-based FTIR in hyperthermophilic composting,” Science of the Total Environment, vol. 945, Oct. 2024, doi: 10.1016/j.scitotenv.2024.174139.

W. Yang, Y. Zhong, Q. Zhuo, L. Xiao, G. Owens, and Z. Chen, “Enhanced copper passivation in pig manure composting through iron nanoparticle amendment,” Science of the Total Environment, vol. 958, Jan. 2025, doi: 10.1016/j.scitotenv.2024.177950.

E. Gastaldi, F. Buendia, P. Greuet, and S. Domenek, “Data on behavior and environmental impact of compostable packaging materials in full-scale industrial composting conditions,” Data Brief, vol. 57, p. 111102, Dec. 2024, doi: 10.1016/j.dib.2024.111102.

F. Ruggero, E. Carretti, R. Gori, T. Lotti, and C. Lubello, “Monitoring of degradation of starch-based biopolymer film under different composting conditions, using TGA, FTIR and SEM analysis.,” Chemosphere, vol. 246, May 2020, doi: 10.1016/j.chemosphere.2019.125770.

R. R. Hurley, A. L. Lusher, M. Olsen, and L. Nizzetto, “Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices,” Environ Sci Technol, vol. 52, no. 13, pp. 7409–7417, Jul. 2018, doi: 10.1021/acs.est.8b01517.

E. Niedrite, L. Klavins, L. Dobkevica, O. Purmalis, G. Ievinsh, and M. Klavins, “Sustainable control of invasive plants: Compost production, quality and effects on wheat germination,” J Environ Manage, vol. 371, Dec. 2024, doi: 10.1016/j.jenvman.2024.123149.

B. Shen et al., “Insights from meta-analysis on carbon to nitrogen ratios in aerobic composting of agricultural residues,” Bioresour Technol, vol. 413, Dec. 2024, doi: 10.1016/j.biortech.2024.131416.